Wednesday, March 24, 2010

Pengertian Himpunan

himpunan adalah segala koleksi benda-benda tertentu yang dianggap sebagai satu kesatuan. Walaupun hal ini merupakan ide yang sederhana, tidak salah jika himpunan merupakan salah satu konsep penting dan mendasar dalam matematika modern, dan karenanya, studi mengenai struktur kemungkinan himpunan dan teori himpunan, sangatlah berguna.

* Pengertian/defenisi Himpunan (set)
• Himpunan (set) adalah kumpulan objek-objek yang berbeda.
• Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Cara Penyajian Himpunan
1. Enumerasi
Contoh 1.
- Himpunan empat bilangan asli pertama:A = {1, 2, 3, 4}.
- Himpunan lima bilangan genap positif pertama:B = {4, 6, 8, 10}.
- C = {kucing, a, Amir, 10, paku}
- R = { a, b, {a, b, c}, {a, c} }
- C = {a, {a}, {{a}} }
- K = { {} }
- Himpunan 100 buah bilangan asli pertama: {1, 2, ..., 100 }
- Himpunan bilangan bulat ditulis sebagai{…, -2, -1, 0, 1, 2,..} Keanggotaan
x  A : x merupakan anggota himpunan A;
x  A : x bukan merupakan anggota himpunan A.

2. Simbol-simbol Baku
P = himpunan bilangan bulat positif = { 1, 2, 3, ... }
N = himpunan bilangan alami (natural) = { 1, 2, ... }
Z = himpunan bilangan bulat = { ..., -2, -1, 0, 1, 2, ... }
Q = himpunan bilangan rasional
R = himpunan bilangan riil
C = himpunan bilangan kompleks
• Himpunan yang universal: semesta, disimbolkan dengan U.
Contoh: Misalkan U = {1, 2, 3, 4, 5} dan A adalah himpunan bagian dari U, dengan A = {1, 3, 5}.

3. Notasi Pembentuk Himpunan
Notasi: { x  syarat yang harus dipenuhi oleh x }
Contoh 4.
(i) A adalah himpunan bilangan bulat positif yang kecil dari 5
A = { x | x adalah bilangan bulat positif lebih kecil dari 5}
atau
A = { x | x * P, x < 5 }yang ekivalen dengan A = {1, 2, 3, 4} Donwload Materi Lengkap disini

0 comments: